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Parametric Study of Flutter for an Airfoil
in Inviscid Transonic Flow

Denis B. Kholodar,¤ Jeffrey P. Thomas,† Earl H. Dowell,‡ and Kenneth C. Hall§

Duke University, Durham, North Carolina 27708-0300

With the use of a state of the art inviscid computational � uid dynamic harmonic balance aerodynamic-Euler-
based code, a systematic, parametric investigation is presented into how the several structural parameters and
freestream Mach number of a transonic � ow affect the � utter characteristics of a “typical” two-degree-of-freedom
transonic airfoil con� guration. The computationalef� ciency of the time-linearized option of the harmonicbalance
aerodynamic model allows a much more thorough exploration of the parameter range than has been possible
previously.

Nomenclature
a = nondimensional location of airfoil elastic axis, e=b
b; c = semichord and chord, respectively
Ncl ; Ncm = � rst harmonic coef� cient of lift and moment about

elastic axis, respectively
Ncl Nh ; Ncl N® = � rst harmonic coef� cient of lift due to plunge

and pitch motions, respectively
Ncm Nh ; Ncm N® = � rst harmonic coef� cient of moment due to plunge

and pitch motions, respectively
e = location of airfoil elastic axis, measured positive

aft of airfoil midchord
h; ® = airfoil plunge and pitch degree of freedom (DOF),

respectively
hav = averaged grid step in the radial direction, identical

to (R=c ¡ 1
2
/=.Nr ¡ 1/

Nh; N® = � rst harmonic amplitude of plunge
nondimesionalizedby semichord, Nh is equal
to h=b, and pitch motion, respectively

I® = second moment of inertia about elastic axis
Kh ; K® = airfoil plunge stiffness and torsional stiffness about

elastic axis, respectively
k = reduced frequency based on airfoil semichord,

identical to !b=U1
L ; Mea = lift and moment about elastic axis, respectively
M = freestream Mach number
m = airfoil sectional mass
N = number of harmonics used in harmonic

balance solver
Nr ; N2 = number of grid points in radial and circumferential

direction, respectively
R = radius of computationaldomain
r® = radius of gyration of airfoil about elastic axis, r 2

® is
identical to I®=mb2

S® = � rst moment of inertia about elastic axis
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U1 = freestream velocity
V = reduced velocity, identical to U1=!®b
V f =

p
¹ = � utter speed index, U1 f =

p
¹!®b

x® = airfoil static unbalance, S®=mb
¹ = mass ratio, identical to m=¼½1b2

!; N! = frequency and reduced frequency based on airfoil
chord, N! is identical to !c=U1

!®; !h = uncoupled natural frequencies of pitch
and plunge DOF

!1; !2 = coupled structural natural frequencies

Subscript

f = � utter onset condition

Introduction

T RANSONIC � ow � utter and limit-cycleoscillations(LCO) are
of signi� cant interest in wing and aircraftdesign.The large ex-

pense incurred in both time- and frequency-domaintransonic aero-
dynamic computationsis the principalobstacle to the aeroelastician
in obtaining a deeper understanding of these phenomena through a
systematic parameter study.

Reduced-ordermodeling(ROM) techniqueshavebeendeveloped
and used to overcomethisobstaclein recentwork on this subject.For
a generalreviewof the lateststudies involvingROM-basedmethods,
see Ref. 1. Padé approximantsof transferfunctionsand variousother
rational polynomial curve � tting techniques also have been used in
recent years for linear � utter analysis, for example, see Refs. 2–4.

In the past few years at Duke University, a number of computa-
tional � uid dynamics (CFD) time (dynamically) linearized codes
have been developed5;6 and converted to the frequency domain.
ROM techniques have then been applied to these dynamically lin-
earized CFD codes and then used for � utter analyses that are very
computationallyef� cient.

Recently, a novel nonlinear harmonic balance (HB) method that
extends the frequency domain CFD models to the fully dynam-
ically nonlinear range has been developed. This method enables
one to model ef� ciently nonlinear unsteady aerodynamic behav-
ior corresponding to � nite amplitude structural motion of a pre-
scribed frequency, which can be subsequently used for modeling
LCO behavior.5¡7 We believe these two methods, ROM-based � ut-
ter analysisandHB-basedLCO modeling,will signi� cantlyadvance
the aeroelastician’s capability to do rapid parametric studies.

In the current study, a time-linearized option of the Euler HB
model is used to capture the effects of the mean position of the
shockandsmallshockmotionsabout thismeanpositionon transonic
� utter. The shock motion is assumed linearly proportional to the
airfoil motion in this study.

This study also had another goal, that is, � nding a (� utter) bound-
ary of neutrally stable points for further use in a subsequent LCO
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study7 of the same model with large shock motion aerodynamic
nonlinearities included.

Results for the � utter boundary using the present methodology
for the famous Isogai typical section case have been discussed in
Ref. 8, and a favorablecomparisonhas been made with the resultsof
other investigatorswho used potentialor Euler � ow models. Further
comparisons with results of others from theory and experiment are
included in this paper.

Governing Equations
Consider a “typical” two-degrees-of-freedom(DOF) airfoil sec-

tion as shown in Fig. 1. The equations of motion of this aeroelastic
system can be written in the form

m Rh C S® R® C Khh D ¡L; S®
Rh C I® R® C K® ® D Mea (1)

Here the left-hand-side terms represent a linear structural model
approximationfor the plungeand pitch coordinates.The right-hand-
side terms represent the aerodynamic loading terms, which for this
studyarebasedon the HB approachapplied to a discreteCFD model
of the inviscid Euler equations. Here we present a summary of the
method. For a more detailed description see Refs. 5 and 6.

In integral form, the unsteady Euler equations may be written as

@

@t

Z

D.t/

Z
U dD C

I

@ D.t/

³
F.U/ ¡ U

@ f

@ t

´
dy

¡
I

@ D.t/

³
G.U/ ¡ U

@g

@t

´
dx D 0 (2)

where x and y are the Cartesian coordinates, t is time, and D is
a deforming control volume bounded by the control surface @ D.
The quantities @ f=@t and @g=@t are the x and y components of the
velocity of the control surface @ D. The conservation� uid variables
U and � ux vectors F and G are given by

U D f½; ½u; ½v; EgT

F.U/ D f½u; ½u2 C p; ½uv; .E C p/ugT

G.U/ D f½v; ½uv; ½v2 C p; .E C p/vgT (3)

where ½ is the density, u and v are the velocity components in the
x and y directions, respectively, p is the pressure, and E is the total
energy, which is the sum of the internal and kinetic energy:

E D ½e C .½=2/.u2 C v2/ (4)

Considering a calorically perfect gas, the system of equations is
completed via

p D .° ¡ 1/fE ¡ .½=2/[u2 C v2]g (5)

Fig. 1 Aeroelastic typical section.

Frequency-Domain Equations
The next step in the HB development is to consider strictly peri-

odic unsteady � ows of a fundamental frequency !. The � ow vari-
ables and � uxvectorsare then approximatedusing truncatedFourier
series in time with spatially varying coef� cients. For instance,

Z

D.t/

Z
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NX

n D ¡N

NUnein!t (6)
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NFnei n!t (7)

where N is the number of harmonicsused in the Fourier expansion.
The time derivative of the vector of conservation � uid variables is
then

@

@t

Z

D.t/

Z
U dD ¼ in!

NX

n D ¡N

NUnein!t (8)

Substituting Eqs. (7) and (8) into the Euler equations (2), multiply-
ing by e¡im!t , and integrating over one period yields a system of
equations for the Fourier coef� cients,

A NU C NF D 0 (9)

where the diagonal matrix A and vectors NU and NF are

diag A D f¡i N ; ¡i.N ¡ 1/; : : : ; i N g
NU D f NU¡N ; NU¡.N ¡ 1/; : : : ; NUN gT

NF D f NF¡N ; NF¡.N ¡ 1/; : : : ; NFN gT (10)

As demonstratedbyHall et al.,5 via a Fourier transformmatrix E one
can relate theFourier coef� cientvariables NU to the solutionvariables
at (2N C 1) discrete time levels within a period of motion. Hall
et al.5 also showed how one can express the Fourier � ux coef� cients
in terms of time-domain � ux term variables. This enables the HB
methodology to be easily implemented within an existing steady
CFD � ow solver method. If one de� nes
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where

tn D 2¼n

.2N C 1/!
; n D 0; 1; : : : ; 2N (13)
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then

NU D E OU; NF D E OF (14)

SubstitutingEqs. (14) into the equation for the Fourier coef� cients,
Eq. (9), yields

AE OU C E OF D 0 (15)

which after premultiplyingby E¡1 results in

D OU C OF D 0 (16)

where D ´ E¡1AE is the spectral source term operator that repre-
sents and approximates the temporal partial derivative, @=@t . As
noted in Refs. 5 and 6, to solve the harmonic balance equations,one
can add a pseudotime-derivativeterm @ OU=@¿ to Eq. (16),

@ OU
@¿

C D OU C OF D 0 (17)

where ¿ is a � ctitious time. Because only a “steady-state,” tempo-
rally periodic solution is desired, local time-stepping and multiple-
grid acceleration techniques can be used to increase the speed of
computationalconvergence.The described proceduresallow one to
model nonlinear unsteady aerodynamic of a prescribed frequency
very ef� ciently. Again, see Refs. 5 and 6 for additional details.

Computational Model
Figure 2a shows the O-type computational grid used; a closeup

in Fig. 2b shows the grid cells that surround a symmetric NACA
64A010A airfoil. The mesh consists of Nr £ N2 radial and circum-
ferential nodes. Flutter results presented in this paper are computed
using either 65 £ 65 or 97 £ 97 grids. However, grids of 25 £ 25,
33 £ 33, 49 £ 49, and 129 £ 129 were also considered for a grid
convergence study. The outer boundary radius or domain radius R
was chosen to be either 5 or 10 chord lengths;however, the domains
of R=c D 15 and 20 chord lengthswere also considered.The depen-
denceof the calculatedaerodynamicforcesand� utterboundarieson
the grid and domain size was investigated to ensure convergenceof
the numerical results.A slight variantof the standardnode-centered
Lax–Wendroff scheme was used to solve the Euler equations. See
Refs. 9 and 10 for further details.

Convergence Study Results
The dependenceof the calculated aerodynamicforces on the grid

and domain size was investigatedfor Mach numbersof M D 0:7 and
0.8 for various values of the reduced frequency.

In the case of the grid size, it was found that the variation of
aerodynamicforces is monotonicand “close to linear” when plotted
vs a squaredmeasure of grid spacing.This is what one would desire
because the CFD code used is a second-order model in the spatial
variables.The dependenceof the aerodynamicforces on the domain
size, however, is not monotonic. Shown in Figs. 3 and 4 are the
dependence of the � utter boundaries on the grid and domain size,
respectively.In Fig. 3, the � utter speed index and reduced frequency
appearto benearlylinearfunctionsof thegridstep.Moreover,noting
the magni� ed scalesof theverticalaxes,onecanconcludethat � utter
results (for these Mach numbers) are weakly in� uenced by the grid
size. The � utter results in Fig. 4 show that increasing the domain
size from R=c D 5 does not lead to substantialchanges in the � utter
velocity index or frequency. For more results on grid and domain
convergence, see Ref. 11.

Aerodynamic Lift and Moment
For a simple harmonic motion of the airfoil,

h=b D Nhei!t ; ® D N®ei!t (18)

the aerodynamic forces will usually be periodic in time, and for
aeroelastic analysis the � rst harmonic will be dominant. Thus, to a
good approximation,

L D
¡
½U 2

1c
¯

2
¢

Ncle
i!t ; Mea D

¡
½U 2

1c2
¯

2
¢

Ncmei!t (19)

a) Overall view

b) Closeup

Fig. 2 CFD 97 ££ 97 grid with outer boundary radius of 10-chord
lengths around NACA 64A010A airfoil.

In general, the nondimensional lift and moment coef� cients are
expressed as

Ncl D Ncl. N!; geometry; M; Nh; N®/

Ncm D Ncm. N!; geometry; M; Nh; N®/ (20)

where Ncl and Ncm are nonlinear functions of Nh and N®. However, in
dynamically or time-linearized aerodynamics (used in � utter anal-
yses per se), the nondimensional lift and moment coef� cients are
linearly proportional to Nh and N®:

Ncl D Ncl Nh . N!; geom; M/Nh C Ncl N® . N!; geom; M/ N®

Ncm D Ncm Nh . N!; geom; M/Nh C Ncm N® . N!; geom; M/ N® (21)

Note that Ncl N® ´ Ncl= N® for Nh ´ 0, as N® ! 0 Ncl N® D d Ncl =d N®j N® D 0. Similar
de� nitions hold for Ncl Nh , Ncm Nh , and Ncm N® . For reference purposes, the
case of zero Mach number was consideredas well. The closed-form
expressions11 for the lift and moment coef� cients due to the pitch
and plunge motion were obtained from the classical Theodorsen’s
formulas.

Some representativeresultsfor linearaerodynamicbehaviorcom-
puted by running the HB aerodynamic solver with very small am-
plitude motion (Nh D 0:001) are presented in Fig. 5, which shows
the real and imaginary parts of the aerodynamicmoment due to the
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a)

b)

Fig. 3 Squared value of averaged grid step for Meshes N ££ N of
N = 129, 97, 65, 49, 33, and 25 vs a) � utter speed index and b) reduced
frequency.

plunge motion, Ncm Nh , vs reduced frequency.This (symmetric NACA
64A010A) airfoil has a strong shock in the range of 0:8 < M < 0:9.
For subsonicMach numbers 0 < M < 0:7, Ncm Nh is relatively constant
(on the reduced frequency interval [0, 1]). For M D 0:8 a “wavy”
pattern is very prominent in Ncm Nh

. This wavy pattern re� ects the slow
upstream acoustic waves typical of high subsonic/transonic � ow.12

The wavy pattern persists in the aerodynamicmoment up to and in-
cluding M D 0:9. (The Mach numbers of 0.82, 0.84, 0.86, and 0.88
were also studied, but the results are not shown in Fig. 5.) At higher
transonic numbers, from M D 0:92 to M D 1:0, the shock location
is at the trailing edge of the chord, the � ow over the airfoil chord
is supersonic, and the wavy pattern is no longer present. (Not plot-
ted here are curves for Mach numbers of 0.92, 0.94, 0.96, and 0.98
because they correspond very closely to M D 1:0 results shown in
Fig. 5.) The oscillatorybehaviorof Ncm Nh is attributed to the tendency
of the � uid dynamic eigenspectrumto become less damped for tran-
sonic Mach numbers (see Ref. 1). Previous investigatorshave noted
that computational waviness of this sort may be due to inadequate
computationalgrid convergence.13 However, it has also been known
since the classicalresults of Landahl14 that such waviness may arise
from physical effects. The grid-convergence study previously dis-
cussed con� rmed that the waviness in the present study is physical
in origin.

Shown in Fig. 6a is a plot of the ratio of steady lift to pitch angle
vs Mach number (for N! D 0) as obtained from this Euler � ow model.
For reference, the classical results as obtained from potential thin
airfoil theory, dcl=d® D 2¼=

p
.1 ¡ M/ at ® D 0, are also shown.

The effects of airfoil pro� le (thickness) are clearly seen. Figure 6a
presents the Euler � ow model result for cl divided by ® (in radians)
for ® D 1 rad. However, it is found that for the reduced frequency
of zero, N! D 0, cl =® is an erratic function of Mach number in the
range 0:83 · M · 0:89 for suf� ciently small ® (Fig. 6b). Note this
is true even though for a � xed Mach number M , cl =® is a smooth

a)

b)

Fig. 4 Domain radius vs a) � utter speed index and b) reduced
frequency.

function of ® (Fig. 6c). However, for the reduced frequencies of
interest for the � utter boundariesstudiedhere, N! > 0:1, these erratic
variations in cl =® are not present.To illustrate this, the case of Mach
number M D 0:868 is considered. As one can see in Fig. 6b, at this
value (marked by the vertical line) of Mach number M , there is
a noticeable variation in the values of cl =® with ® when N! D 0.
By contrast, as shown in Fig. 6c for M D 0:868, as the reduced
frequency increases above N! D 0:05, the ratio of lift to pitch angle
cl =® is virtually constant with respect to ®. Similar results were
obtained for other Mach numbers, but are not presented here. It was
also found that the degree of numerical smoothing in the CFD code
could change the details of the results for lift at very small angles
and very low reduced frequencies in the Mach number range where
a rapid variation in lift occurs.

Finally, a comparison of aerodynamic transfer functions for this
(NACA 64A010A) airfoil has been performed for M D 0:8 (Fig. 7).
Lift Ncl N® and moment Ncm N® coef� cients (both per radian) obtained by
the presentEuler code are comparedto experimentalvaluesof Davis
and Malcom15 and other Euler calculationsperformedby Magnus16

and Bendiksen and Kousen.17 Also shown are the results of Ueda
and Dowell18 obtained by a describing function method based on
LTRAN2 solver for transonic small-disturbance potential theory,
as well as similar results by Isogai.19 The results of Refs. 15–19
shown in Fig. 7 were taken from Figs. 3 and 4 of Ref. 17. The
results obtainedby the presentEuler code were computedusingone
harmonic in the aerodynamic solution. No signi� cant variations in
lift and moment coef� cients for the fundamental harmonic were
observed when calculations were performed using two harmonics.

The several theoretical results shown in Fig. 7 for the lift and mo-
ment as a functionof reducedfrequencyare on the whole consistent.
However, there is some signi� cant variationamong them especially
for phase angle, but less variation for magnitude. The trends pre-
dictedby thepresenttheoryand thosefromexperimentare in encour-
agingly good agreement. Previous theoretical work provided data
at relatively few reduced frequencies.The computationalef� ciency
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Re(¹cm¹h
)

Im(¹cm¹h
)

Fig. 5 Real and imaginaryparts of the unsteadyaerodynamicmoment
due to plunge motion vs reduced frequency ¹h = 0.001.

of the present theoreticalmethod has allowed a more complete data
set to be obtained.

Flutter
Rewriting the aeroelastic equations in terms of nondimensional

variables yields
"

¡ N!2

³
1x®

x®r 2
®

´
C 4

V 2

Á
!2

h=!2
® 0

0 r 2
®

!

C 4

¼¹

Á
Ncl Nh

Ncl N®

¡2 Ncm Nh
¡2 Ncm N®

!# »Nh
N®

¼
D 0 (22)

In functional form and to emphasize the parameters involved, this
equation can be written as

[F.a; x® ; r®; geom; M; N!; ¹; !h=!®; V /]

»Nh
N®

¼
D 0 (23)

Even though the airfoil model considered has only two DOF, there
are numerous structuraland aerodynamicparameters that will affect
the behavior of F.

The elastic axis was placed at one-� fth of the chord (a D ¡0:6)
and the airfoil radius of gyration and static unbalance were taken
to be r 2

® D 0:75 and x® D 0:25 to conform to the studies in Ref. 6.
Aerodynamic coef� cients NclNh ; Ncl N® , etc., were computed for various
Mach numbers for reducedfrequenciesbetweenzero and one.Thus,
this leaves only the mass ratio ¹, ratio of uncoupled frequencies
!h=!® , and reduced velocity V as parameters to be considered in
Eq. (23). Further � xing the value of either ¹ or !h=!® , normalizing
the structural mode shape fNh; N®g to have a purely real-valued pitch

a)

b)

c)

Fig. 6 Lift curve slope results: a) Ratio of steady lift to pitch angle cl/®
vs Mach number b) Ratio of steady lift to pitch angle cl /® deduced for
® = 0.0001 and 1 rad vs Mach number and c) Ratio of lift magnitude to
pitch angle jjcl /®jj vs ® for different reduced frequencies 0 <– ¹! <– 0:1 at
M = 0.868.

component (the bars on top of nondimensional amplitudes Nh and N®
omitted in what follows)

[F.!h=!® or ¹; V /]

»
hr C ihi

®r

¼
D 0 (24)

and setting the real and imaginary parts of the complex determinant
to zero,

det.F/ D .0; 0/ (25)

one obtains two real equations in 1=¹ or !2
h=!2

® and 1=V 2 [see
Eq. (22)]. The imaginary part of Eq. (25) provides a linear relation
between the two unknowns, 1=¹ or !2

h=!2
® and 1=V 2, and the real

part of Eq. (25) then becomesa quadraticequation for 1=¹ or !2
h=!2

®
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Unsteady lift due to pitch magnitude jj¹cl¹® jj Unsteady lift due to pitch phase angle

Unsteady moment due to pitch magnitude jj¹cm ¹® jj Unsteady moment due to pitch phase angle

Fig. 7 Lift and leading-edge moment coef� cients (both per radian) as functions of reduced frequency k ´ !b/U1 due to pitching §§1 rad at the
quarter-chord for M = 0.8.

a) Flutter speed index Vf /
p

¹

b) Flutter frequency ratio !f /!®

c) Flutter reduced frequency ¹!f

d) Amplitude of � utter (aeroelastic) eigenvector jjhf jj/®r

Fig. 8 Flutter behavior as function of mass ratio for !h/!® = 0.5.
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a) Flutter speed index Vf /
p

¹

b) Flutter frequency ratio !f /!®

c) Flutter speed index Vf /
p

¹

d) Amplitude of � utter (aeroelastic) eigenvector jjhf jj/®r

Fig. 9 Flutter behavior as a function of the mass ratio for !h/!® = 0.8.

a) Flutter speed index Vf /
p

¹

b) Flutter frequency ratio !f /!®

c) Flutter reduced frequency ¹!f

d) Amplitude of � utter (aeroelastic) eigenvector jjhf jj/®r

Fig. 10 Flutter behavior as a function of the ratio of uncoupled frequencies for ¹ = 25.
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that can be solved in closed form. The eigenvector, for example,
(hr =®r ; hi =®r ), at the � utter condition can then be determined from
one of the two complex equations of Eq. (24).

Mass Ratio Effect

Dependence of the � utter boundaries (� utter speed index, � utter
frequency, and eigenvector) on the mass ratio ¹ was investigated
� rst. Two cases for the ratio of uncoupled frequenciesare presented
here: !h=!® D 0:5 (Fig. 8) and !h=!® D 0:8 (Fig. 9).

!h =!® D 0:5

For !h=!® D 0:5, the � utter speed index (Fig. 8a) is seen to be
weakly dependent on ¹ for subsonic Mach numbers. For transonic
Mach numbers of M D 0:8 and M D 0:9, the � utter speed index
decreaseswith ¹ at a much higherrate.For M D 1:0, the � utter speed
index becomes very large (well beyond the scale of the graph). Note
that the � utter reduced frequency (Fig. 8c) for M D 0:9 is distinctly
higher than for other Mach numbers. The � utter frequency (Fig. 8b)
and � utter eigenvector (Fig. 8d) are also less sensitive to mass ratio
at low subsonic Mach numbers with a more signi� cant dependency
occurringat higher subsonicand transonicMach numbers. Coupled
in vacuuonaturalfrequencies!1 and!2 were alsocomputedfor easy
reference, and as can be seen in Fig. 8b, the � utter motion is pitch
dominated for M D 0:9. One may also see this from Fig. 8d, where
coupled in vacuuo eigenvectors .h=®/1 and .h=®/2 are indicated.
The � uttereigenvectorfor M D 0:9 is essentiallythe same as .h=®/1,
which correspondsto the pitch-dominatedmode. This is an example
of single-DOF � utter, but note the critical aeroelastic mode is a
coupled natural mode, albeit one that is pitch dominated.

!h =!® D 0:8

For !h=!® D 0:8, the � utter speed index (Fig. 9a) is even more
weakly dependent on ¹ for subsonic Mach numbers. In Fig. 9c, the
� utter speedindexbehaviorfor transonicMach numbersof M D 0:8,
M D 0:9, and M D 1:0 is shown. As in the case of !h=!® D 0:5, the
� utter speed index for the transonic Mach numbers is more sensi-
tive to ¹ than for the lower, subsonicMach numbers. Moreover, for
this frequency ratio, when M D 0:9, multiple � utter velocities oc-
cur for mass ratios ¹ ¸ 80. To determine the stability of the regions
created by such multiple branches of � utter boundaries a root-loci
analysis for � xed values of !h=!® and ¹ can be employed8;20;21 us-
ing reduced-orderaerodynamicmodels.However in this study,only
� utter boundaries were determined. The � utter frequency (Fig. 9b)
and � utter eigenvector (Fig. 9d) are distributed over the full range
between coupled natural frequencies and eigenvectors, and none
of Mach number cases appears to be primarily pitch or plunge
dominated.

Ratio of Uncoupled Natural Frequencies Effect

Dependence of the � utter boundary on the ratio of uncoupled
natural frequencies!h=!® is next investigated,and two mass ratios
are considered: ¹ D 25 (Figs. 10 and 11) and ¹ D 100 (Fig. 12).

¹ D 25

For ¹ D 25, the � utter speed index (Fig. 10a) has a minimum
near !h=!® D 1. For typical airfoils, !h=!® is usually between 0.2
and 0.8. In that range, the � utter speed index decreases steadily
and is almost constant for Mach numbers less than 0.7. However,
as can be seen and is well known, the � utter speed index becomes
very sensitive to the Mach number for high subsonic or transonic
conditions.

For a better understandingof how the � utter speed index results
are obtained, one can show that the � utter reduced velocity may be
expressed as

V 2
f D

d1

¡
!2

h

¯
!2

®

¢
C d2

d3
(26)

where d1 , d2 , and d3 are coef� cients dependent on the reduced
frequency. Equation (26) is obtained from the imaginary part of

a)

b)

Fig. 11 Flutter reduced frequency ¹!f vs a) !2
h/!2

® and b) coef� cient
a2 of a2(!2

h/!2
®)2 + a1(!2

h/!2
®) + a0 = 0 for ¹ = 25.

Eq. (25). Substitution of Eq. (26) into the real part of Eq. (25) leads
to a quadratic equation in !2

h=!2
® ,

a2

¡
!2

h

¯
!2

®

¢2 C a1

¡
!2

h

¯
!2

®

¢
C a0 D 0 (27)

with the roots given by

³
!2

h

!2
®

´

1;2

D
¡a1 §

p
a2

1 ¡ 4a2a0

2a2
(28)

where the coef� cients ai may also change the sign for different
N!. Obviously, only positive real values of !2

h=!2
® in Eq. (28) have

physicalmeaning.Moreover,only such valuesof !2
h=!2

® are kept for
which V 2

f in Eq. (26) is positive.Real roots of Eq. (28) are shown in
Fig. 11a. When the coef� cient a2 passes through zero, branches of
!2

h=!2
® asymptoticallygo to §1. The dependenceofa2 with respect

to N! f is shown in Fig. 11b. For example, in Fig. 10c for M D 0:9,
a2 goes through zero at N! f ’ 0:7, which is when the branches of
!2

h=!2
® go to §1 in Fig. 11a.

Note that the difference between the two coupled natural fre-
quencies (!1 and !2 as indicated in Fig. 10b) is the smallest near
!h=!® D 1. This is likely responsible for the minimum in the � ut-
ter speed index in the vicinity of that point: The closer the coupled
natural frequencies are initially, the more readily, when increasing
velocity, “coalescence” or “merging frequency” � utter can occur
(p. 112, Ref. 12).

¹ D 100

For ¹ D 100, the � utter speed index (Figs. 12a and 12c) again
has the tendency to have a minimum near !h=!® D 1, especially so
for subsonic Mach numbers (Fig. 12a). As in the case for ¹ D 25,
the � utter speed index is nearly constant with Mach number M for
subsonic conditions.At higher transonic Mach numbers (Fig. 12c),
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a) Flutter speed index Vf /
p

¹

b) Flutter frequency ratio !f /!®

c) Flutter speed index Vf /
p

¹

d) Amplitude of � utter (aeroelastic) eigenvector jjhf jj/®r

Fig. 12 Flutter behavior as a function of ratio of uncoupled frequencies for ¹ = 100.

the � utter speed indexbecomesvery sensitiveto Mach number.This
behavioris associatedwith the “transonic � utter dip.” Also note that
the � utter speed index can be a multivalued function of !h=!® for
M D 0:8 and M D 0:9. Note that (Fig. 12b) the � utter frequency
is very close to the coupled natural pitch frequency, !1=!® , for
M D 0:9 (pitch-dominatedmotion).This is indicativeof single-DOF
� utter (p. 113, Ref. 12).

Mach Number Effect

The dependenceof the � utterboundaryon Machnumber(Figs. 13
and 14) for the cases of ¹ D 25 and 100 and !h=!® D 0:5 and 0.8 is
presented next.

!h =!® D 0:5

Figure 13 shows the � utter boundary behavior vs Mach number
for !h=!® D 0:5. Squares represent the case of ¹ D 25 and circles
the case of ¹ D 100. Note a rather weak dependence of the � utter
boundaries on the mass ratio.

As the Mach number is increased past M D 0:8, a sharp drop
in the � utter reduced frequency occurs. That is accompanied by a
sharp increase in the � utter speed index. As the Mach number is
increased further, another branch of � utter points appears. These
low � utter speed index values correspond to the transonic � utter
dip.

For an explanation to the abrupt change in � utter mode at
M D 0:82 and M D 0:91,onemay ask whether the steady� ow shock
position is changing and where the shock location is relative to the
elastic axis and mode nodes.

The steady� ow pressurecontoursfor M D 0:81 and M D 0:82 did
not show any signi� cant changes in the pressure distribution.How-
ever, the situation is different for Mach numbers above M D 0:9.
Here the locationof the shockmoves to the trailingedge as theMach
number is increasedabove M D 0:9. For !h=!® D 0:8, the � utter be-
havior also changes in the viscinity of these Mach numbers. Note

that in the Mach number range 0:82 < M < 0:92 (Fig. 15) the po-
sition of the shock on the airfoil moves appreciably.To develop an
improved understanding of the behavior of the � utter boundaries,
one could perform a root locus analysis that would enable one to
view the migration of the aeroelastic eigenvalues as a function of
the nondimensionalairspeed for each Mach number.Representative
root locus analyses for transonic Mach numbers of similar airfoil
models can be found in Refs. 8, 20, and 21. However, root loci have
not been part of the present study.

The reduced � utter frequency behavior is shown in Fig. 13c.
For subsonic and low transonic Mach numbers (0 · M · 0:8), N! f

is much higher for the lower mass ratio ( N! f ¼ 0:4) than for the
higher mass ratio ( N! f ¼ 0:2). At high transonic Mach numbers
(0:82 · M < 0:92), the � utter reduced frequency is about the same
for either mass ratio.

The � utter (aeroelastic)eigenvectoris shown in Fig. 13d and pro-
videsa possibleexplanationfor the low � utter speed indexvalues for
the transonicdip Mach numberregion. In this range, the � uttermode
becomes pitch dominated for both values of mass ratio. The � utter
mode is markedly different from that for M < 0:82, for example.

!h =!® D 0:8

The � utter speed index for !h=!® D 0:8 is shown in Fig. 14a.
For this rather high value of pitch to plunge frequency ratio, there
is no transonic dip in the � utter speed index at the lower mass
ratio. Moreover, the system appears to be more stable at the high
transonic Mach numbers. For the higher mass ratio as the Mach
number increases, the � utter velocity index reaches its minimum
in the range 0:78 < M < 0:88. The � utter mode then appears to
change twice for even higher Mach numbers.Contrary to the results
for !h=!® D 0:5, here the � utter frequency shown in Fig. 14b is not
very close to either the pitch- or plunge-couplednatural frequency.
Thus, the � utter mode (Fig. 14d) is not a single-DOF � utter motion,
but rather a combined pitch–plunge motion.
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a) Flutter speed index Vf /
p

¹

b) Flutter frequency ratio !f /!®

c) Flutter reduced frequency ¹!f

d) Amplitude of � utter (aeroelastic) eigenvector jjhf jj/®r

Fig. 13 Flutter behavior as function of Mach number for !h/!® = 0.5 and ¹ = 25 and 100.

a) Flutter speed index Vf /
p

¹

b) Flutter frequency ratio !f /!®

c) Flutter reduced frequency ¹!f

d) Amplitude of � utter (aeroelastic) eigenvector jjhf jj/®r

Fig. 14 Flutter behavior as function of Mach number for !h/!® = 0.8 and ¹ = 25 and 100.
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M = 0.82

M = 0.92

Fig. 15 Steady � ow pressure contours.

Conclusions
Using a state of the art Euler-based time-linearized aerodynamic

code, an investigation is presented of how structural and aerody-
namic parameters including freestream (transonic) Mach number
affect � utter and LCO characteristics of a typical two-DOF airfoil
con� guration. Convergence of the CFD code with respect to grid
spacing and computational domain size was also considered.

The following conclusions have been drawn.
1) When the dependence of the � utter on the mass ratio ¹ was

examined, it was found that the � utter variables, that is, reduced
velocity, frequency, and structural eigenmode, vary little with ¹,
especially for subsonic Mach numbers.

2) As expected, a study of the effect of the ratio of uncoupled
natural frequencies !h=!® determined that � utter reduced veloci-
ties have a minimum near !h=!® ¼ 1. Multiple values of the � utter
velocity can occur at high transonicMach numbers for some !h=!® .

3) Most signi� cantly perhaps, it was demonstrated that � utter
solutions are very sensitive to Mach number especially in the tran-
sonic range. When the frequency and the mass ratios are depended
on, there may or may not be sudden and signi� cant changes, for
example, the transonic dip, in the � utter reduced velocity and the
type of � utter motion as the Mach number is varied.

4) Finally, note that viscous effects may be important.22 It has
been our experience that when the aerodynamic � ow is attached

an inviscid analysis is adequate, but for separated � ows, a viscous
analysis is required.

An extensive parameter analyses of an airfoil aeroelastic con� g-
uration has been achieved using a highly ef� cient time linearized
CFD computationaltechnique.Correlationwith experimentremains
an open challenge; however, a comparison of results from our
CFD model with results from an unsteady aerodynamicexperiment
by Davis and Malcom15 for lift and moment shows encouraging
agreement.
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