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Parametric Study of Flutter for an Airfoil
in Inviscid Transonic Flow

Denis B. Kholodar,* Jeffrey P. Thomas,” Earl H. Dowell,* and Kenneth C. Hall®
Duke University, Durham, North Carolina 27708-0300

With the use of a state of the art inviscid computational fluid dynamic harmonic balance aerodynamic-Euler-
based code, a systematic, parametric investigation is presented into how the several structural parameters and
freestream Mach number of a transonic flow affect the flutter characteristics of a “typical” two-degree-of-freedom
transonic airfoil configuration. The computational efficiency of the time-linearized option of the harmonicbalance
aerodynamic model allows a much more thorough exploration of the parameter range than has been possible

previously.
Nomenclature
a = nondimensionallocation of airfoil elastic axis, e/b
b,c = semichord and chord, respectively
C1, Cp = first harmonic coefficient of lift and moment about
elastic axis, respectively
Cry 5 Crg = first harmonic coefficient of lift due to plunge

and pitch motions, respectively
‘_'"lz ,Cm; = firstharmonic coefficient of moment due to plunge
and pitch motions, respectively
location of airfoil elastic axis, measured positive
aft of airfoil midchord
airfoil plunge and pitch degree of freedom (DOF),
respectively
averaged grid step in the radial direction, identical
to (R/c—4)/(N, 1)
first harmonic amplitude of plunge
nondimesionalizedby semichord, & is equal
to h/b, and pitch motion, respectively
second moment of inertia about elastic axis
airfoil plunge stiffness and torsional stiffness about
elastic axis, respectively
reduced frequency based on airfoil semichord,
identical to wb/ U,
lift and moment about elastic axis, respectively
freestream Mach number
airfoil sectional mass
= number of harmonics used in harmonic
balance solver
number of grid points in radial and circumferential
direction, respectively
radius of computational domain
radius of gyration of airfoil about elastic axis, r2 is
identical to 1,/ mb?
first moment of inertia about elastic axis
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U = freestream velocity

14 = reduced velocity, identical to U,/ w,b

Vi/J/u = flutter speed index, Usos// e b

Xo = airfoil static unbalance, S,/ mb

n = mass ratio, identical to m /7 pob*

w,® = frequency and reduced frequency based on airfoil
chord, w is identical to wc/ Ux

Wy, wp = uncouplednatural frequencies of pitch
and plunge DOF

w1, = coupled structural natural frequencies

Subscript

f = flutter onset condition

Introduction

RANSONIC flow flutter and limit-cycle oscillations (LCO) are

of significantinterestin wing and aircraftdesign. The large ex-
pense incurred in both time- and frequency-domaintransonic aero-
dynamic computationsis the principal obstacle to the aeroelastician
in obtaining a deeper understanding of these phenomena through a
systematic parameter study.

Reduced-ordermodeling (ROM) techniqueshave beendeveloped
and used to overcomethis obstaclein recent work on this subject. For
a generalreview of the lateststudies involvingROM-based methods,
see Ref. 1. Padé approximantsof transferfunctionsand various other
rational polynomial curve fitting techniques also have been used in
recent years for linear flutter analysis, for example, see Refs. 2—4.

In the past few years at Duke University, a number of computa-
tional fluid dynamics (CFD) time (dynamically) linearized codes
have been developed® and converted to the frequency domain.
ROM techniques have then been applied to these dynamically lin-
earized CFD codes and then used for flutter analyses that are very
computationally efficient.

Recently, a novel nonlinear harmonic balance (HB) method that
extends the frequency domain CFD models to the fully dynam-
ically nonlinear range has been developed. This method enables
one to model efficiently nonlinear unsteady aerodynamic behav-
ior corresponding to finite amplitude structural motion of a pre-
scribed frequency, which can be subsequently used for modeling
LCO behavior’~7 We believe these two methods, ROM-based flut-
ter analysisand HB-based LCO modeling, will significantly advance
the aeroelastician’s capability to do rapid parametric studies.

In the current study, a time-linearized option of the Euler HB
model is used to capture the effects of the mean position of the
shock and small shock motions about this mean positionon transonic
flutter. The shock motion is assumed linearly proportional to the
airfoil motion in this study.

This study also had another goal, that is, finding a (flutter) bound-
ary of neutrally stable points for further use in a subsequent LCO



304 KHOLODAR ET AL.

study’ of the same model with large shock motion aerodynamic
nonlinearitiesincluded.

Results for the flutter boundary using the present methodology
for the famous Isogai typical section case have been discussed in
Ref. 8, and a favorablecomparisonhas been made with the results of
otherinvestigatorswho used potential or Euler flow models. Further
comparisons with results of others from theory and experiment are
included in this paper.

Governing Equations
Consider a “typical” two-degrees-of-freedom(DOF) airfoil sec-
tion as shown in Fig. 1. The equations of motion of this aeroelastic
system can be written in the form

mh + S,& + K,h = —L, Soh+I,d+ Ko =M, (1)
Here the left-hand-side terms represent a linear structural model
approximationfor the plunge and pitch coordinates. The right-hand-
side terms represent the aerodynamic loading terms, which for this
study are based on the HB approachappliedto a discrete CFD model
of the inviscid Euler equations. Here we present a summary of the
method. For a more detailed description see Refs. 5 and 6.

In integral form, the unsteady Euler equations may be written as

i//UanL‘(f Foy-vil)a
o1 o) ot )

D)

= f (G(U)—Ua—g) dx =0 2)
aD(1) ot

where x and y are the Cartesian coordinates, ¢ is time, and D is
a deforming control volume bounded by the control surface d.D.
The quantities df/dt and dg/dt are the x and y components of the
velocity of the control surface d D. The conservation fluid variables
U and flux vectors F and G are given by

U={p.pu,pv, E}Y
F(U) = {pu, pu® + p, puv, (E + p)u}’
GW) = {pv, puv, pv* + p. (E + p)v}’ 3)
where p is the density, # and v are the velocity components in the

x and y directions,respectively, p is the pressure, and E is the total
energy, which is the sum of the internal and kinetic energy:

E = pe+ (p/2)W® + v?) )

Considering a calorically perfect gas, the system of equations is
completed via

p=(y — D{E = (p/2)[u* + v*]} &)

Fig. 1 Aeroelastic typical section.

Frequency-Domain Equations

The next step in the HB developmentis to consider strictly peri-
odic unsteady flows of a fundamental frequency w. The flow vari-
ables and flux vectors are then approximatedusing truncated Fourier
series in time with spatially varying coefficients. For instance,

N
/ / UdD ~ Z U, (6)
n=—N

D(1)

and

f (F(U)—Ug) dy—f (G(U)—U%) dx
ID() ax ID(0) ay

N
~ Y Fem )

n=-N

where N is the number of harmonics used in the Fourier expansion.
The time derivative of the vector of conservation fluid variables is

then
) SO
o //UdD Ninw Y U, 8)
D) n=-—N

Substituting Eqgs. (7) and (8) into the Euler equations (2), multiply-
ing by e~™*’ and integrating over one period yields a system of
equations for the Fourier coefficients,

AU+F=0 Q)

where the diagonal matrix A and vectors U and F are

diagA = {—iN,—i(N —1),...,iN}
L_7 = {L_LN, L_]—(N—l)a ~~~,L_7N}T
IE:{I}—NaI}—(N—l)anI}N}T (10)

As demonstratedby Hall etal.,’ viaa Fourier transformmatrix E one
canrelate the Fourier coefficient variablesU to the solutionvariables
at (2N + 1) discrete time levels within a period of motion. Hall
etal.’ also showed how one can express the Fourier flux coefficients
in terms of time-domain flux term variables. This enables the HB
methodology to be easily implemented within an existing steady
CFD flow solver method. If one defines

N
U(t)

A Do)
=1 - (11)
Uy) // U(ty)dD
D)
and
F (1)
F= =
F(ty)
0 0
yg (F(U) - U—f) dy —yg (G(U) - U—g) dx
D) ax /1, aD (1) /1,
0 0
yg (F(U) - U—f) dy — (G(U) - U—g) dx
aD(w) ax /1, aD(tw) W/,
(12)
where
2mn
i, n=01,...,2N (13)

“ 2N+ Do
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then

U =EU, F=EF (14)
Substituting Egs. (14) into the equation for the Fourier coefficients,
Eq. (9), yields

AEU + EF =0 (15)
which after premultiplyingby E~! results in
DU+ F =0 (16)

where D =E~'AE is the spectral source term operator that repre-
sents and approximates the temporal partial derivative, d/dt. As
noted in Refs. 5 and 6, to solve the harmonic balance equations, one

can add a pseudotime-derivativeterm E)i//ar to Eq. (16),

U Az
S +DU+F=0 (17)
T

where 7 is a fictitious time. Because only a “steady-state;” tempo-
rally periodic solution is desired, local time-stepping and multiple-
grid acceleration techniques can be used to increase the speed of
computationalconvergence. The described proceduresallow one to
model nonlinear unsteady aerodynamic of a prescribed frequency
very efficiently. Again, see Refs. 5 and 6 for additional details.

Computational Model

Figure 2a shows the O-type computational grid used; a closeup
in Fig. 2b shows the grid cells that surround a symmetric NACA
64A010A airfoil. The mesh consists of N, x Ng radial and circum-
ferential nodes. Flutter results presented in this paper are computed
using either 65 x 65 or 97 x 97 grids. However, grids of 25 x 25,
33 x 33,49 x 49, and 129 x 129 were also considered for a grid
convergence study. The outer boundary radius or domain radius R
was chosen to be either 5 or 10 chord lengths; however, the domains
of R/c =15 and 20 chord lengths were also considered. The depen-
denceof the calculatedaerodynamicforces and flutter boundarieson
the grid and domain size was investigated to ensure convergence of
the numerical results. A slight variantof the standard node-centered
Lax—Wendroff scheme was used to solve the Euler equations. See
Refs. 9 and 10 for further details.

Convergence Study Results

The dependenceof the calculated aerodynamic forces on the grid
and domain size was investigatedfor Mach numbers of M = 0.7 and
0.8 for various values of the reduced frequency.

In the case of the grid size, it was found that the variation of
aerodynamicforces is monotonic and “close to linear” when plotted
vs a squared measure of grid spacing. This is what one would desire
because the CFD code used is a second-order model in the spatial
variables. The dependence of the aerodynamicforces on the domain
size, however, is not monotonic. Shown in Figs. 3 and 4 are the
dependence of the flutter boundaries on the grid and domain size,
respectively.In Fig. 3, the flutter speed index and reduced frequency
appearto be nearly linear functionsof the grid step. Moreover, noting
the magnified scales of the vertical axes, one can conclude that flutter
results (for these Mach numbers) are weakly influenced by the grid
size. The flutter results in Fig. 4 show that increasing the domain
size from R/c =5 does not lead to substantial changes in the flutter
velocity index or frequency. For more results on grid and domain
convergence, see Ref. 11.

Aerodynamic Lift and Moment
For a simple harmonic motion of the airfoil,
h/b = he', o = aqe (18)

the aerodynamic forces will usually be periodic in time, and for
aeroelastic analysis the first harmonic will be dominant. Thus, to a
good approximation,

L= (pUc/2)ee™, M., = (pU2 2 [2)E,e'™  (19)
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a) Overall view

b) Closeup

Fig. 2 CFD 97 x 97 grid with outer boundary radius of 10-chord
lengths around NACA 64A010A airfoil.

In general, the nondimensional lift and moment coefficients are
expressed as

¢ = &/(@, geometry, M, h,a&)

Cn = Cu(@, geometry, M, h, &) (20)

where ¢; and ¢,, are nonlinear functions of 4 and «. However, in
dynamically or time-linearized aerodynamics (used in flutter anal-
yses per se), the nondimensional lift and moment coefficients are
linearly proportional to /2 and o:

¢ = ¢; (®, geom, M)h + ¢, (w, geom, M)a
Cn = G, (@, geom, M)h + ¢, (@, geom, Mya  (21)

Note thatc,, =¢;/a forh=0,asa — 0¢,, =d¢;/dala =0. Similar
definitions hold for ‘_'lw E,,zg, and ¢, . For reference purposes, the
case of zero Mach number was considered as well. The closed-form
expressions'! for the lift and moment coefficients due to the pitch
and plunge motion were obtained from the classical Theodorsen’s
formulas.

Some representativeresults for linearaerodynamicbehaviorcom-
puted by running the HB aerodynamic solver with very small am-
plitude motion (h =0.001) are presented in Fig. 5, which shows
the real and imaginary parts of the aerodynamic moment due to the
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Fig. 3 Squared value of averaged grid step for Meshes N X N of

N =129,97, 65, 49, 33, and 25 vs a) flutter speed index and b) reduced
frequency.

plunge motion, ¢,,. , vs reduced frequency. This (symmetric NACA
64A010A) airfoil has a strong shock in the range of 0.8 < M < 0.9.
For subsonic Mach numbers0 < M < 0.7, E,,lg is relatively constant
(on the reduced frequency interval [0, 1]). For M =0.8 a “wavy”
pattern is very prominentin ¢,,, . This wavy patternreflects the slow
upstream acoustic waves typical of high subsonic/ransonic flow.!?
The wavy pattern persists in the aerodynamic moment up to and in-
cluding M =0.9. (The Mach numbers of 0.82, 0.84, 0.86, and 0.88
were also studied, but the results are not shown in Fig. 5.) At higher
transonic numbers, from M =0.92 to M = 1.0, the shock location
is at the trailing edge of the chord, the flow over the airfoil chord
is supersonic,and the wavy pattern is no longer present. (Not plot-
ted here are curves for Mach numbers of 0.92, 0.94, 0.96, and 0.98
because they correspond very closely to M = 1.0 results shown in
Fig. 5.) The oscillatory behaviorof ¢,,; is attributed to the tendency
of the fluid dynamic eigenspectrumto become less damped for tran-
sonic Mach numbers (see Ref. 1). Previous investigators have noted
that computational waviness of this sort may be due to inadequate
computationalgrid convergence.!> However, it has also been known
since the classicalresults of Landahl' that such waviness may arise
from physical effects. The grid-convergence study previously dis-
cussed confirmed that the waviness in the present study is physical
in origin.

Shown in Fig. 6a is a plot of the ratio of steady lift to pitch angle
vs Mach number (for @ = 0) as obtained from this Euler flow model.
For reference, the classical results as obtained from potential thin
airfoil theory, d¢;/da =27 /+4/(1 — M) at « =0, are also shown.
The effects of airfoil profile (thickness) are clearly seen. Figure 6a
presents the Euler flow model result for ¢; divided by « (in radians)
for « =1 rad. However, it is found that for the reduced frequency
of zero, @ =0, ¢;/a is an erratic function of Mach number in the
range 0.83 < M < 0.89 for sufficiently small o (Fig. 6b). Note this
is true even though for a fixed Mach number M, ¢;/« is a smooth
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0.30 . . ) .
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045 b

Flutter Reduced Frequency, ®;

035 . . . .
0.00 0.05 0.10 0.15 0.20 0.25
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b)

Fig. 4 Domain radius vs a) flutter speed index and b) reduced
frequency.

function of « (Fig. 6¢). However, for the reduced frequencies of
interest for the flutter boundariesstudied here, w > 0.1, these erratic
variationsin ¢; /o are not present. To illustrate this, the case of Mach
number M = 0.868 is considered. As one can see in Fig. 6b, at this
value (marked by the vertical line) of Mach number M, there is
a noticeable variation in the values of ¢;/o with « when @ =0.
By contrast, as shown in Fig. 6¢ for M =0.868, as the reduced
frequency increases above @ = 0.05, the ratio of lift to pitch angle
¢;/a is virtually constant with respect to «. Similar results were
obtained for other Mach numbers, but are not presented here. It was
also found that the degree of numerical smoothing in the CFD code
could change the details of the results for lift at very small angles
and very low reduced frequencies in the Mach number range where
a rapid variation in lift occurs.

Finally, a comparison of aerodynamic transfer functions for this
(NACA 64A010A) airfoil has been performed for M = 0.8 (Fig. 7).
Lift ¢;; and moment ¢,,, coefficients (both per radian) obtained by
the presentEuler code are compared to experimental values of Davis
and Malcom'?® and other Euler calculations performed by Magnus'¢
and Bendiksen and Kousen."” Also shown are the results of Ueda
and Dowell'® obtained by a describing function method based on
LTRAN2 solver for transonic small-disturbance potential theory,
as well as similar results by Isogai.!” The results of Refs. 15-19
shown in Fig. 7 were taken from Figs. 3 and 4 of Ref. 17. The
results obtained by the present Euler code were computed using one
harmonic in the aerodynamic solution. No significant variations in
lift and moment coefficients for the fundamental harmonic were
observed when calculations were performed using two harmonics.

The several theoretical results shown in Fig. 7 for the lift and mo-
mentas a functionof reduced frequency are on the whole consistent.
However, there is some significant variationamong them especially
for phase angle, but less variation for magnitude. The trends pre-
dicted by the presenttheory and those from experimentare in encour-
agingly good agreement. Previous theoretical work provided data
atrelatively few reduced frequencies. The computational efficiency
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due to plunge motion vs reduced frequency /# = 0.001.

of the present theoretical method has allowed a more complete data
set to be obtained.

Flutter

Rewriting the aeroelastic equations in terms of nondimensional
variables yields

—? lxoc,) + io a)i/a}i
Xl & 0 r

4 & . h
+— i e {_}:0 (22)

T - 2"‘111 i - 2"‘111 £ &

e

R o

In functional form and to emphasize the parameters involved, this
equation can be written as

h
[F(a,x,,rq, geom, M, o, i, ®) /@y, V)]{_} =0 (23)
o

Even though the airfoil model considered has only two DOF, there
are numerous structural and aerodynamic parameters that will affect
the behavior of F.

The elastic axis was placed at one-fifth of the chord (a =—0.6)
and the airfoil radius of gyration and static unbalance were taken
to be r2=0.75 and x, = 0.25 to conform to the studies in Ref. 6.
Aerodynamic coefficients El; , €15 » etc., were computed for various
Mach numbers for reduced frequenciesbetween zero and one. Thus,
this leaves only the mass ratio u, ratio of uncoupled frequencies
wy /wy, and reduced velocity V' as parameters to be considered in
Eq. (23). Further fixing the value of either i or w;, /w,, normalizing
the structural mode shape {/, a} to have a purely real-valued pitch
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component (the bars on top of nondimensional amplitudes hand &
omitted in what follows)

h, +ih;
[F(w,/w, or w, V)]{ o } =0 (24)

r

and setting the real and imaginary parts of the complex determinant
to zero,

det(F) = (0, 0) (25)

one obtains two real equations in 1/u or w}/w? and 1/V? [see
Eq. (22)]. The imaginary part of Eq. (25) provides a linear relation
between the two unknowns, 1/ or o} /w? and 1/V?2, and the real
partof Eq. (25) then becomes a quadraticequation for 1/ or w; /w?
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that can be solved in closed form. The eigenvector, for example,
(h, /o, hi/a,), at the flutter condition can then be determined from
one of the two complex equations of Eq. (24).

Mass Ratio Effect

Dependence of the flutter boundaries (flutter speed index, flutter
frequency, and eigenvector) on the mass ratio ; was investigated
first. Two cases for the ratio of uncoupled frequencies are presented
here: w;, /w, = 0.5 (Fig. 8) and w;, /w, = 0.8 (Fig. 9).

wp/wy =0.5

For w;,/w, =0.5, the flutter speed index (Fig. 8a) is seen to be
weakly dependent on p for subsonic Mach numbers. For transonic
Mach numbers of M =0.8 and M =0.9, the flutter speed index
decreaseswith p atamuch higherrate. For M = 1.0, the flutter speed
index becomes very large (well beyond the scale of the graph). Note
that the flutter reduced frequency (Fig. 8c) for M = 0.9 is distinctly
higher than for other Mach numbers. The flutter frequency (Fig. 8b)
and flutter eigenvector (Fig. 8d) are also less sensitive to mass ratio
at low subsonic Mach numbers with a more significant dependency
occurring at higher subsonic and transonic Mach numbers. Coupled
in vacuuonatural frequenciesw, and w, were alsocomputed foreasy
reference, and as can be seen in Fig. 8b, the flutter motion is pitch
dominated for M =0.9. One may also see this from Fig. 8d, where
coupled in vacuuo eigenvectors (h/«); and (h/a), are indicated.
The fluttereigenvectorfor M = 0.9 is essentiallythe same as (1 /)1,
which correspondsto the pitch-dominatedmode. This is an example
of single-DOF flutter, but note the critical aeroelastic mode is a
coupled natural mode, albeit one that is pitch dominated.

wp [y =0.8

For w;, /w, =0.8, the flutter speed index (Fig. 9a) is even more
weakly dependenton p for subsonic Mach numbers. In Fig. 9c, the
flutter speed index behaviorfor transonicMach numbersof M = 0.8,
M =0.9,and M = 1.0 is shown. As in the case of w,/w, =0.5, the
flutter speed index for the transonic Mach numbers is more sensi-
tive to u than for the lower, subsonic Mach numbers. Moreover, for
this frequency ratio, when M = 0.9, multiple flutter velocities oc-
cur for mass ratios u > 80. To determine the stability of the regions
created by such multiple branches of flutter boundaries a root-loci
analysis for fixed values of w, /w, and u can be employed®2*2! us-
ing reduced-orderaerodynamic models. However in this study, only
flutter boundaries were determined. The flutter frequency (Fig. 9b)
and flutter eigenvector (Fig. 9d) are distributed over the full range
between coupled natural frequencies and eigenvectors, and none
of Mach number cases appears to be primarily pitch or plunge
dominated.

Ratio of Uncoupled Natural Frequencies Effect

Dependence of the flutter boundary on the ratio of uncoupled
natural frequencies w, /w, is next investigated, and two mass ratios
are considered: u =25 (Figs. 10 and 11) and =100 (Fig. 12).

n=25

For =25, the flutter speed index (Fig. 10a) has a minimum
near wy, /w, = 1. For typical airfoils, w;, /@, is usually between 0.2
and 0.8. In that range, the flutter speed index decreases steadily
and is almost constant for Mach numbers less than 0.7. However,
as can be seen and is well known, the flutter speed index becomes
very sensitive to the Mach number for high subsonic or transonic
conditions.

For a better understanding of how the flutter speed index results
are obtained, one can show that the flutter reduced velocity may be
expressed as

di(w? /o) +d
ij_ = M (26)
d
3
where d, d,, and d; are coefficients dependent on the reduced
frequency. Equation (26) is obtained from the imaginary part of
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Eq. (25). Substitution of Eq. (26) into the real part of Eq. (25) leads
to a quadratic equation in w? /w?,

az(a)i/a)i)z + a, (a)i/a)ﬁ) +ay=0 27)

with the roots given by

(a)_i) _a +./al — dayay 28)
12

2
g 2a,

where the coefficients a; may also change the sign for different
o. Obviously, only positive real values of w?/w? in Eq. (28) have
physical meaning. Moreover, only such values of @? /w? are kept for
which ij. in Eq. (26) is positive. Real roots of Eq. (28) are shown in
Fig. 11a. When the coefficient a, passes through zero, branches of
o?} /w? asymptoticallygo to £00. The dependenceof a, with respect
to w; is shown in Fig. 11b. For example, in Fig. 10c for M =0.9,
a, goes through zero at @, > 0.7, which is when the branches of
w? /ol go to +oo in Fig. 11a.

Note that the difference between the two coupled natural fre-
quencies (w; and w, as indicated in Fig. 10b) is the smallest near
wp /wy = 1. This is likely responsible for the minimum in the flut-
ter speed index in the vicinity of that point: The closer the coupled
natural frequencies are initially, the more readily, when increasing
velocity, “coalescence”’ or “merging frequency” flutter can occur
(p- 112, Ref. 12).

w=100

For =100, the flutter speed index (Figs. 12a and 12c) again
has the tendency to have a minimum near w;, /w, = 1, especially so
for subsonic Mach numbers (Fig. 12a). As in the case for u =25,
the flutter speed index is nearly constant with Mach number M for
subsonic conditions. At higher transonic Mach numbers (Fig. 12c),
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Fig. 12 Flutter behavior as a function of ratio of uncoupled frequencies for p = 100.

the flutter speed index becomes very sensitive to Mach number. This
behavioris associated with the “transonic flutter dip.” Also note that
the flutter speed index can be a multivalued function of w;, /w, for
M =0.8 and M =0.9. Note that (Fig. 12b) the flutter frequency
is very close to the coupled natural pitch frequency, w;/w,, for
M = 0.9 (pitch-dominatedmotion). This is indicativeof single-DOF
flutter (p. 113, Ref. 12).

Mach Number Effect

The dependenceof the flutterboundary on Mach number (Figs. 13
and 14) for the cases of © =25 and 100 and w;, /w, =0.5 and 0.8 is
presented next.

wp/wy =0.5

Figure 13 shows the flutter boundary behavior vs Mach number
for w,/w, =0.5. Squares represent the case of u =25 and circles
the case of u© =100. Note a rather weak dependence of the flutter
boundaries on the mass ratio.

As the Mach number is increased past M =0.8, a sharp drop
in the flutter reduced frequency occurs. That is accompanied by a
sharp increase in the flutter speed index. As the Mach number is
increased further, another branch of flutter points appears. These
low flutter speed index values correspond to the transonic flutter
dip.

For an explanation to the abrupt change in flutter mode at
M =0.82and M =0.91, one may ask whether the steady flow shock
position is changing and where the shock location is relative to the
elastic axis and mode nodes.

The steady flow pressurecontoursfor M =0.81 and M = 0.82 did
not show any significant changes in the pressure distribution. How-
ever, the situation is different for Mach numbers above M =0.9.
Here the locationof the shock moves to the trailingedge as the Mach
numberis increased above M = 0.9. For w,, /w, = 0.8, the flutter be-
havior also changes in the viscinity of these Mach numbers. Note

that in the Mach number range 0.82 < M < 0.92 (Fig. 15) the po-
sition of the shock on the airfoil moves appreciably. To develop an
improved understanding of the behavior of the flutter boundaries,
one could perform a root locus analysis that would enable one to
view the migration of the aeroelastic eigenvalues as a function of
the nondimensionalairspeed for each Mach number. Representative
root locus analyses for transonic Mach numbers of similar airfoil
models can be foundin Refs. 8, 20, and 21. However, root loci have
not been part of the present study.

The reduced flutter frequency behavior is shown in Fig. 13c.
For subsonic and low transonic Mach numbers (0 <M <0.8), vy
is much higher for the lower mass ratio (o, ~0.4) than for the
higher mass ratio (v ~0.2). At high transonic Mach numbers
(0.82 < M <0.92), the flutter reduced frequency is about the same
for either mass ratio.

The flutter (aeroelastic)eigenvectoris shown in Fig. 13d and pro-
videsa possibleexplanationfor the low flutter speed index values for
the transonicdip Mach numberregion. In this range, the fluttermode
becomes pitch dominated for both values of mass ratio. The flutter
mode is markedly different from that for M < 0.82, for example.

wp /wg =0.8

The flutter speed index for w, /w, =0.8 is shown in Fig. 14a.
For this rather high value of pitch to plunge frequency ratio, there
is no transonic dip in the flutter speed index at the lower mass
ratio. Moreover, the system appears to be more stable at the high
transonic Mach numbers. For the higher mass ratio as the Mach
number increases, the flutter velocity index reaches its minimum
in the range 0.78 <M < 0.88. The flutter mode then appears to
change twice for even higher Mach numbers. Contrary to the results
for w;, /w, = 0.5, here the flutter frequency shown in Fig. 14b is not
very close to either the pitch- or plunge-couplednatural frequency.
Thus, the flutter mode (Fig. 14d) is not a single-DOF flutter motion,
but rather a combined pitch-plunge motion.
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Fig. 15 Steady flow pressure contours.

Conclusions

Using a state of the art Euler-based time-linearized aerodynamic
code, an investigation is presented of how structural and aerody-
namic parameters including freestream (transonic) Mach number
affect flutter and LCO characteristics of a typical two-DOF airfoil
configuration. Convergence of the CFD code with respect to grid
spacing and computational domain size was also considered.

The following conclusions have been drawn.

1) When the dependence of the flutter on the mass ratio u was
examined, it was found that the flutter variables, that is, reduced
velocity, frequency, and structural eigenmode, vary little with pu,
especially for subsonic Mach numbers.

2) As expected, a study of the effect of the ratio of uncoupled
natural frequencies w;, /w, determined that flutter reduced veloci-
ties have a minimum near w;, /@, ~ 1. Multiple values of the flutter
velocity can occur at high transonic Mach numbers for some w, /@, .

3) Most significantly perhaps, it was demonstrated that flutter
solutions are very sensitive to Mach number especially in the tran-
sonic range. When the frequency and the mass ratios are depended
on, there may or may not be sudden and significant changes, for
example, the transonic dip, in the flutter reduced velocity and the
type of flutter motion as the Mach number is varied.

4) Finally, note that viscous effects may be important2? It has
been our experience that when the aerodynamic flow is attached

an inviscid analysis is adequate, but for separated flows, a viscous
analysis is required.

An extensive parameter analyses of an airfoil aeroelastic config-
uration has been achieved using a highly efficient time linearized
CFD computationaltechnique.Correlation with experimentremains
an open challenge; however, a comparison of results from our
CFD model with results from an unsteady aerodynamic experiment
by Davis and Malcom' for lift and moment shows encouraging
agreement.

Acknowledgments

This work was supported by the Air Force Office of Scientific
Research Grant “Computation of Limit Cycle Oscillations in Sup-
port of Flight Flutter Testing.” Len Sakel and Charles Denegri are
the program managers.

References

I'Dowell, E. H., and Hall, K. C., “Modeling of Fluid-Structure Interac-
tion,” Annual Review of Fluid Mechanics, Vol. 33, 2001, pp. 445-490.

2Vepa, R., “On the Use of Padé Approximates to Represent Unsteady
Aerodynamic Loads for Arbitrarily Small Motions of Wings,” AIAA Paper
76-17,Jan. 1976.

3Karpel, M., “Design for Active Flutter Suppression and Gust Alleviation
Using State-Space Aeroelastic Modeling,” Journal of Aircraft, Vol. 19,No. 3,
1982, pp. 221-227.

4Raveh, D. E., Levy, Y., and Karpel, M., “Aircraft Aeroelastic Analysis
and Design Using CFD-Based Unsteady Loads,” 41st Structures, Structural
Dynamics, and Materials Conference and Exhibit, AIAA Paper 2000-1325,
Reston, VA, 2000.

SHall, K. C., Thomas, J. P., and Clark, W. S., “Computation of Unsteady
Nonlinear Flows in Cascades Using a Harmonic Balance Technique,” AIAA
Journal, Vol. 40, No. 5, 2002, pp. 879-886.

%Thomas, J. P., Dowell, E. H., and Hall, K. C., “Nonlinear Inviscid Aero-
dynamic Effects on Transonic Divergence, Flutter, and Limit-Cycle Oscil-
lations,” AIAA Journal, Vol. 40, No. 4, 2002, pp. 638-646.

7Kholodar, D. B., Thomas, J. P., Dowell, E. H., and Hall, K. C., “A
Parameter Study of Transonic Airfoil Flutter and Limit-Cycle Oscillation
Behavior,” 43rd Structures, Structural Dynamics, and Materials Conference
and Exhibit, ATAA Paper 2002-1211, Denver, CO, 2002.

8Hall, K. C., Thomas, J. P., and Dowell, E. H., “Proper Orthogonal De-
composition Technique for Transonic Unsteady Aerodynamic Flows,” AIAA
Journal, Vol. 38, No. 10, 2000, pp. 1853-1862.

9Ni, R., “A Multiple Grid Scheme for Solving the Euler Equations,” ATAA
Journal, Vol. 20, No. 11, 1982, pp. 1565-1571.

10gaxor, A. P, “A Numerical Analysis of 3-D Inviscid Stator/Rotor In-
teractions Using Non-Reflecting Boundary Conditions,” Gas Turbine Lab.
Rept. 209, Massachusetts Inst. of Technology, Cambridge, MA, March 1992.

IKholodar, D. B., “Aeroelastic Response of an Airfoil with Structural
and Aerodynamic Nonlinearities,” Ph.D. Dissertation, Dept. of Mechanical
Engineering and Material Science, Duke Univ., Durham, NC, May 2002.

B2powell, E. H., Crawley, E. E, Curtiss, Jr., H. C., Scanlan, R. H., and
Sisto, F., A Modern Course in Aeroelasticity, edited by E. H. Dowell, Kluwer
Academic, Norwell, MA, 1995, pp. 12, 113.

13Seidel, D. A., Bennett, R. M., and Whitlow, W., Jr., “An Exploratory
Study of Finite Difference Grids for Transonic Unsteady Aerodynamics,”
NASA TM-84583,1982.

141 andahl, M., Unsteady Transonic Flow, Pergamon, Oxford, 1961.

5Pavis, S. N., and Malcom, G. N., “Transonic Shock-Wave/Boundary-
Layer Interactions on an Oscillating Airfoil,” AIAA Journal, Vol. 18,No. 11,
1980, pp. 1306-1312.

lﬁMagnuS, R. J., “Computational Research on Inviscid, Unsteady,
Transonic Flow Over Airfoils,” Office of Naval Research, Rept. ONR
CASCD/LVP 77-010, 1977.

I"Bendiksen, O. O., and Kousen, K. A., “Transonic Flutter Analysis Using
the Euler Equations,” AIAA Dynamics Specialist Conference, AIAA Paper
87-0911-CP, April 1987.

18Ueda, T., and Dowell, E. H., “Flutter Analysis Using Nonlinear Aero-
dynamic Forces,” Journal of Aircraft, Vol. 21, No. 2, 1984, pp. 101-109.

150 gai, K., “Numerical Study of Transonic Flutter of a Two-Dimensional
Airfoil,” NAL TR-617T, National Aerospace Inst., Tokyo, Japan, 1980.

20Thomas, J. P, Dowell, E. H., and Hall, K. C. “Transonic Limit-Cycle
Oscillation Analysis Using Reduced Order Aerodynamic Models,” 42nd
Structures, Structural Dynamics, and Materials Conference and Exhibit,
AIAA Paper 2001-1212, Seattle, WA, 2001.

21Florea, R., Hall, K. C., and Dowell, E. H., “Eigenmode Analysis and
Reduced-Order Modeling of Unsteady Transonic Potential Flow Around
Airfoils,” Journal of Aircraft, Vol. 37, No. 3, 2000, pp. 454-462.



